2025 Wx Study - Gap Analysis Chart (5/31/2002)				Technology					Science			
	Performance	Capability	Challenges		Computing	Communication	Detector	Space System	Software	\Box	Scientific	Scientific
TECHNOLOGY REQUIREMENTS	Objective	Maturity	Investments		Technology	Technology	Technology	Technology	Engineering		Research	Infrastructure
<u> </u>					Challenges	Challenges	Challenges	Challenges	Challenges	C	Challenges	Challenges
		1-8	1-8		1-8	1-8	1-8	1-8	1-8	Ш	1-8	1-8
OBSERVING SYSTEM										Ц		
Command and Control				Н						+		
Artificial Intelligence (event detection)	Semi-autonomous control of 30 spacecraft	6.5	6.5	Н	6.5	5.5	N/A	6.5	6.5		6.5	
System-wide Distributed Intelligence	Semi-autonomous control of 30 spacecraft	3.5	6.5		6.5	5.5	N/A	5.5	6.5		6.5	
Dynamically Reconfigurable Mission	Semi-autonomous control of 30 spacecraft	7.0	6.5	Н	6.5	5.5	N/A	6.5	6.5		6.5	
Spacecraft & Instrument Tasking	Semi-autonomous control of 30 spacecraft	4.0	4.0		3.0	5.0	N/A	4.5	3.5		3.0	
Coordinated Multi-Spacecraft Observing	Semi-autonomous control of 30 spacecraft	4.0	4.0		3.0	5.0	N/A	4.5	3.5		3.0	
Coordinated Space & Ground Observing	Semi-autonomous control of 30 spacecraft	4.0	4.0		3.0	5.0	N/A	4.5	3.5		3.0	
Mission / Situation Dependent Observing	Semi-autonomous control of 30 spacecraft	4.0	4.0		3.0	5.0	N/A	4.5	3.5		3.0	
Dynamic Asset Re-assignment / Optimization	Semi-autonomous control of 30 spacecraft	4.0	4.0		3.0	5.0	N/A	4.5	3.5		3.0	
Communication, External Interfaces	No Gap									Ш		
Via Terrestrial Backbone Network Infrastructure	No Gap			Ш						ш		
M/DAS	No Gap		1	Ш						$\vdash \vdash$		
"Guiding Intelligence"	No Gap			\sqcup						\vdash		
Computing	No Gap			Н						+		
Observing System Network				H						П		
Communication, Internal		4.5										
Real-time Global Communication and Data Exchange		4.5								Ш		
RF Bandwidth		4.5		Ш						Ш		
Space System Architecture		4.5		Ш						\vdash		
Seamless Space Ground Communications		4.5		Ш						\vdash		
Internet in Space		4.5		Ш						\vdash		
Protocol Development		4.5		Н						₩		
Data Security & Encryption Laser Communication (Space to Space)		4.5 4.5		Н						\vdash		
Laser Communication (Space to Space)		4.5		Н						H		
Forward Model												
Ground-based computing		2	2		1	NA	NA	NA	1		2	2
On-board computing		3	3	Н	3	3	NA	2	3		2	3
Space-Based and In-Situ Observations				Н						H		
•	Global 1-hr @ 1km resolution									П		
Space-based Precipitation (Active)	Global 1-III @ IKIII 1630Iddioii	4.5	4.5		2	2	3	6	3	ш	4.5	4.5
Multi-frequency/polarized Precipitation & Cloud Radar		5.5			2	N/A	3			\vdash		
Multple Phased-Array Antennae Technology		4.5			2	N/A	3	6		\vdash		
Large Deployable Antennae On-board Power Generation (RF)	1 km driver	6		Н	2	N/A N/A	N/A N/A	6		\vdash		
Pointing Control Requirements		3		\vdash	2	N/A N/A	N/A N/A	3		\vdash		
On-board Processing			+	\vdash	2	N/A	N/A			$\vdash \vdash$		
OII-board 1 roccssing				Н	-	19/73	13/7-3					
Space-based Laser Winds (Active)		6	7		2	N/A		6	N/A	m		
Telescopy (heterodyne vs		5.5			2	N/A		6	N/A	\sqcap		
On-board Power Generation (Laser & SC control)	minimum: 4kw avg, 7kw peak	Schnurr			2	N/A		6	N/A	口厂		_
UV Laser Technology & Techniques					2	N/A		6	N/A			
IR Laser Technology & Techniques				П	2	N/A		6	N/A	ЦT		
Frequency Agile Receivers transmitters				Ш	2			6		ot]	
On-board Processing				Н	2	N/A		N/A	N/A	\dashv		
Space-based Soil Moisture	Global 1-hr at 1 km horiz. resolution	6.5	5	H								
				П						II		
Active				и Т						4 I	_	
				Н						\vdash	\longrightarrow	
Active				H						H.		
Active Passive	IR Vertical Profiles vs. Land Characterization	25	5									
Active Passive Hyperspectral Sensing (Passive)	IR Vertical Profiles vs. Land Characterization	2.5	5									
Active Passive	IR Vertical Profiles vs. Land Characterization	2.5	5									

2025 Wx Study - Gap Analysis Chart (5/31/2002)							Science				
	Performance	Capability	Challenges	(Computing	Communication	Detector	Space System	Software	Scientific	Scientific
TECHNOLOGY REQUIREMENTS	Objective	Maturity	Investments	П,	Technology	Technology	Technology	Technology	Engineering	Research	Infrastructure
	,				Challenges	Challenges	Challenges	Challenges	Challenges	Challenges	Challenges
		1-8	1-8		1-8	1-8	1-8	1-8	1-8	1-8	1-8
Space-based 3D Temperature & Humidity	Global 3-hr @ .25 km vert. & 25 km horiz. res.	3	5								
Interferometric Sounding Methods GPS Refraction / Limb Occultation Methods		4	4.5								
Differential Absorption LIDAR for humidity		3.5	5.5							2	4
Raman LIDAR for Pressure and Chemical Contituents		+									
Trainan Erbyittion i Toosaro ana Onomioa Gontiagnio											
Surface Ocean Winds	Global 3-hr winds @ 25km vertical resolution	1	4						2		
GPS Reflection		6 1.5	4.5							5.5 2.5	4
Scatterometry MW Polarimetry		3	4							2.5	
Conventional Terrestrial-based Observations		2	4								
Surface Shelter Observations (T,P,V,Q,C,R)		1	2		1	2	1		1	1	2
Aircraft (T,Q,V)		2.5	4		1	2	4		1		
Radiosondes (T,Q,V)		1	2		1	2	2		1	2	2
Automated Remote Release		2.5	4								N/
Unmanned Aerial Vehicles		5	4		3	3	N/A	N/A	3	N/A	N/A
EVDANGIONO											
EXPANSIONS											
Guidence, Navigation, and Control		6.5	4.5		5	4	4	6.5	6.5		
Pointing, Stabilization, Tracking Control, and geolocation performance	sub-mas knowledge, mas ctrl	6	4		5			6	4		
Low Cost/Power GPS time, position, attitude determin.	high=allt, < \$50k, < 5 W	6	4		6			7	7		
"Drag-Free Orbit Control System Technology Innovative Multi-Function S/C Systems	sub-meter accuracy	5	5		4	4	4	5	3		
Spacecraft Autonomous Orbit Maintenance	highly integrated bus 30 S/C Management, no operator in loop	6	4		3	5	*	4	4		
Spacestate Fateriorinous Orbit Maintenance	55 Gro Management, no sporator in 1669								-		
On-Board Computing and Storage		6.5	6.5		6	6.5	N/A	5.5	6.5	6.5	
Image Processing & Analysis					6	6.5	N/A	5.5	6.5		
Data Processing & Analysis		6.5	6.5		6	6.5	N/A	5.5	6.5	6.5	
Processor Speed and Capacity		3	3		3	6	N/A	3	3	3	
On-board Data Storage		3	3		3	3	N/A	3	3	3	
Radiation Hardening Distributed, Dynamically Allocable Computing		6	6	Н	3 5	5.5	N/A N/A	5.5 5.5	6	3 5	
Reconfigurable, Mission-Dependent Software (FPGA)		6	6		5	5.5	N/A	5.5	6	5	
Artificial Intelligence Overhead		6	4		3	5	N/A	4	4	5	
Ü											
Computing (High Performance)											
Data Storage & Archival	1.0 e+15 Bytes/day	3	3		3	3	N/A	N/A	4	4	
System Architectures & Data Systems	1.010.051.000	6	6	Щ	6	6	N/A	N/A	5	5	
Processing Capacity	1.0 e+10 GFLOPS	7	7		7	5	N/A	N/A	6	6	
MODEL & DATA ACCIMIL ATION SYSTEM											
MODEL & DATA ASSIMILATION SYSTEM											
Data Ingest and Preprocessing	Ingest and Pre-processing of >> 1 Tbyte / day	1	3	Щ	2	2	N/A	N/A	2	N/A	N/A
Data Aggregation and Reduction Communication	+	1	3	Н	2	2 N/A	N/A N/A	N/A N/A	2 2	N/A N/A	N/A N/A
Artificial Intelligence	<u> </u>	1	3 - 4		2	N/A N/A	N/A N/A	N/A N/A	3 - 4	N/A 3	N/A N/A
Computing Capacity		2	1 - 2	П	3	N/A	N/A	N/A	3	N/A	N/A
Quality Control Function		1	1		1	N/A	N/A	N/A	1	2	2
QC Methodologies		1	1		1	N/A	N/A	N/A	1	2	2
Computing Speed & Capacity		1	1	Ш	1	N/A	N/A	N/A	1	2	1
Analysis and Analysis # 4	Harris and half affile affile affile			Н							
Analysis and Assimilation Function 4DVAR Methodologies	Hourly analysis of 1.0 e+8 obs on 25 km grid	7 3	5		6 - 7 6	N/A N/A	N/A N/A	N/A N/A	2 2	4	4

2025 Wx Study - Gap Analysis Chart (5/31/2002)							Science			
	Performance	Capability	Challenges	Compu	ng Communication	Detector	Space System	Software	Scientific	Scientific
TECHNOLOGY REQUIREMENTS	Objective	Maturity	Investments	Technol	ogy Technology	Technology	Technology	Engineering	Research	Infrastructure
				Challen	es Challenges	Challenges	Challenges	Challenges	Challenges	Challenges
		1-8	1-8	1-8	1-8	1-8	1-8	1-8	1-8	1-8
Computing Speed & Capacity		7 - 8	7	7	N/A	N/A	N/A	5 - 6	4	4
Targeted Observation Methodologies		5.5	3	3	N/A	N/A	N/A	3	4	4
Error Growth Estimation / Prediction		5.5	3	3	N/A	N/A	N/A	3	4	4
Stichastic / Ensemble Predictions		5.5	3	3	N/A	N/A	N/A	3	4	4
Computing Speed & Capacity		7	7	7	N/A	N/A	N/A	3	4	4
Global Mesoscale Model	1-10km Resolution Global Atmospheric Model	7	6	4	N/A	N/A	N/A	4	6 - 7	5
Numerical Solutions & Techniques		5 - 6	5	3	N/A	N/A	N/A	3	5	4
Adaptive Grid Techniques		5 - 6	5	4	N/A	N/A	N/A	5	5	4
Targeted Observation Methodologies		4	5 - 6		N/A	N/A	N/A	4	5	4
Parameterization Development		6 - 7	6 - 7	5	N/A	N/A	N/A	4	5 - 6	4
Computing Speed and Capacity		3	3	3	N/A	N/A	N/A	4	N/A	N/A
SCIENCE INFRASTRUCTURE	1	4		2	N/A	N/A	N/A	2	2	2
Observing System Simulation Testbed		4		2	N/A	N/A	N/A	2	2	2